Functional relations and universality for several types of multiple zeta functions

نویسنده

  • Takashi Nakamura
چکیده

Firstly, we prove a functional relation for the Tornheim double zeta function. Using this functional relation, we obtain simple proofs of some known formulas for special values of Tornheim and Euler-Zagier double zeta functions. Secondly, we obtain functional relations for Witten zeta functions by using a double L-values relation. By these functional relations, we obtain new proofs of known results on the Tornheim double zeta function, the Euler-Zagier double zeta function, their alternating and character analogues. Thirdly, we define λ-joint, a′-joint, (λ, λ)-joint, (λ, a′)-joint and (a′, a′)-joint t-universality of Lerch zeta functions and consider the relations among those. Next we show the existence of (λ, λ)joint t-universality. We also show the existence of λ-joint, a′-joint, (λ, a′)-joint and (a′, a′)-joint t-universality by using inversion formulas. Fourthly, we show the following theorems. Suppose 0 < al < 1 are algebraically independent numbers and 0 < λl ≤ 1 for 1 ≤ l ≤ m. Then we have the joint t-universality for Lerch zeta functions L(λl, al, s) for 1 ≤ l ≤ m. Next we generalize Lerch zeta functions, and obtain the joint t-universality for them. In addition, we show examples of the non-existence of the joint t-universality for Lerch zeta functions and generalized Lerch zeta functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint Value-distribution Theorems on Lerch Zeta-functions. Ii

We give corrected statements of some theorems from [5] and [6] on joint value distribution of Lerch zeta-functions (limit theorems, universality, functional independence). We also present a new direct proof of a joint limit theorem in the space of analytic functions and an extension of a joint universality theorem.

متن کامل

Functional Relations and Special Values of Mordell-tornheim Triple Zeta and L-functions

In this paper, we prove the existence of meromorphic continuation of certain triple zeta-functions of Lerch’s type. Based on this result, we prove some functional relations for triple zeta and L-functions of the MordellTornheim type. Using these functional relations, we prove new explicit evaluation formulas for special values of these functions. These can be regarded as triple analogues of kno...

متن کامل

A note on poly-Bernoulli numbers and multiple zeta values

We review several occurrences of poly-Bernoulli numbers in various contexts, and discuss in particular some aspects of relations of poly-Bernoulli numbers and special values of certain zeta functions, notably multiple zeta values.

متن کامل

Joint universality of periodic zeta-functions: continuous and discrete cases

In this paper, we give a survey on universality theorems of the collection of various zeta-functions, when one of them has an Euler product and other has no. We present some results on both, continuous and discrete, cases.

متن کامل

Uniform Distribution modulo 1 and the Universality of Zeta-functions of Certain Cusp Forms

An universality theorem on the approximation of analytic functions by shifts ζ(s+iτ, F ) of zeta-functions of normalized Hecke-eigen forms F , where τ takes values from the set {kαh : k = 0, 1, 2, . . . } with fixed 0 < α < 1 and h > 0, is obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007